=E=NiX.Com

Developing large-scale
Applications in Python

Lessons learned from 10 years of
Python Application Design

UK Python Conference 2004
Oxford, United Kingdom

Marc-André Lemburg

EGENIX.COM Software GmbH
Germany

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co

UK Python Conference 2004

=E=nix.Ccom Large-Scale Applications in Python.

Speaker Introduction: Marc-André Lemburg

* CEO eGenix.com Software GmbH, Germany

— Founded in 2000
— Core business: projects and products using Python and C

e Consultant

— More than 20 years software experience

— Diploma in Mathematics

— Expert in Python, OOP, Web Technologies and Unicode
— Python Core Developer

— Python Software Foundation Board Member (02/04)

— Contact: mal@egenix.com

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co UK Python Conference 2004

mailto:mal@egenix.com

=E=niX.cCom Large-Scale Applications in Python |

Introduction

1. Introduction

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com Large-Scale Applications in Python

Python2EE: Large-scale applications

* What is considered “large-scale” in Python ?

— Server application: >30 thousand lines of Python code
— Client application: >10 thousand lines of Python code

— Third-Party code: >10 thousand lines of code
— Typically a mix of Python code and C extensions

* Examples:

— Zope / Plone

— eGenix Application Server
— eGenix projects: e.g. XML Database, Finance Applications

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co UK Python Conference 2004

=GE=MNIX.COM Large-Scale Applications in Python

Application Design

2. Application Design

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=NiX.com Large-Scale Applications in Python |

Path to success: Application Design

* Python makes it very easy to write complex applications
with very little code

— It’s easy to create bad designs fast
— Rewriting code is fast as well

* Application design becomes the most important factor in
Python projects

* Here’s a cookbook approach to the problem...

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co UK Python Conference 2004

=E=nix.com Large-Scale Applications in Python

Breaking it down: The Design Concept

e /en

— Keep things as simple as possible, but not simpler (KISS).
— There’s beauty in design.

— Before doing things twice, think twice.

— If things start to pile up, management is needed.

— If management doesn’t help, decomposition is needed.

* Structured approach to application design

— Divide et Impera (divide and conquer)

— Lots and lots of experience ©

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co UK Python Conference 2004

=E=nix.com Large-Scale Applications in Python

First step: Choose a suitable application model

 Client-Server

Client
— Client application / Server application i
— Web client / Server application { 3
erver
* Multi-threaded stand-alone
— Stand-alone GUI application oY

| Event Handler |

| Business Logic |
| J

* Single process

— Command-line application
— Batch job application

Input]—>[Processor]—> Output]

e etc.

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Bytes in action: Requirements for request processing

* Identify the processing scheme: e # W

— Single process T i \

— Multiple processes HEGOESS

— Multiple threads LA / Process %

— Asynchronous processing Al [Interface Logic

— A mix of the above = Server Logic

\ Application Logic
. . | Storage Logic | |

* Identify the process/thread boundaries: |

— Which components (need to) share the & 8 8

same object space ?

— Where is state kept ?
— What defines an application instance ?

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Looking closer: Application layers

* Every application can be divided into layers of functionality
defined by the flow of data through the application

— Top layer: interface to the outside world
— Intermediate layers: administration and processing

P

* Layers are usually easy to identify Interface Logic_
given the application model Administration Logic

— Bottom layer: data storage

Applica#ion 2

Application Logic
— ... but often hard to design B Storage Logic

& L

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Vertical design: Find the right application layer model

Client
* GUI/ Application Logic / Storage Logic
Web
Browser
Eni
* Network / Apache / SCGI / Server Logic / I
Application Logic / Storage Logic ~
Server
Interface Logic
* File I/O / Application Logic / Server Logic
Storage Logic Application Logic

Storage Logic

Custom model @ 8 8)

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co UK Python Conference 2004

=E=nix.com : Large-Scale Applications in Python |

Example: Web Client + Server Application

* Setup: Client Client Client
— Client is a standard Web Web Web
web-browser Browser Browser Browser
_J _J _J

— Server needs to take a lot
of load and will have to
do all the calculation
work

[Multiple Process Broker]

— Server needs to be

fail-safe
/Server Process\ /Server Process\ /Server Process\
Interface Logic Interface Logic Interface Logic
e Solution: Server Logic Server Logic Server Logic _

Application Logic Application Logic Application Logic

— Multiple process model

Storage Logic Storage Logic Storage Logic

=
s
=
s
=

— Application server layers \

N—

N— N—

12

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com Large-Scale Applications in Python

The next step: Breaking layers into smaller pieces

* Layers provide a data driven separation of functionality

* Problem:

— The level of complexity is usually too high
to implement these in one piece of code

e Solution:

— build layers using a set of
loosely coupled components

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=niX.COm Large-Scale Applications in Python |

Plug & play: Component design

* Components should encapsulate higher level concepts
within the application, e.g.

— provide the database interface

— implement the user management

— implement the session management
— provide caching facilities

— interface to external data sources

— provide error handling facilities

— enable logging management

— etc.

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Advantages of components

* Components provide independent building blocks
for the application

— They should be easily replaceable to adapt the application to new
requirements, e.g.

* porting the application to a new database backend,
* using a new authentication mechanism, etc.

> If implemented correctly, they will allow switching to different
processing model should the need arise

— Loose coupling of the components make it possible to
* refine the overall application design,
* refactor parts of the layer logic or
* add new layers
> without having to rewrite large parts of the application code

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Hitchhiker’s guide to: Component implementation

* Each component is represented by a component object

* One system component object (representing the application instance):

— All component objects are created and managed by the system object

— Components can access each other through the system object
(circular references !)

* Component interfaces must be simple and high-level enough
to allow for loose coupling

— Internal parts of the components are never accessed directly,
only via the component interface

* Note: Component objects should never keep state across requests
(ideally, they should be thread-safe)

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=GE=niX.Ccom Large-Scale Applications in Python

Horizontal design: Split the layers into components

Y G e n e r al ap p ro aC h : Process Boundary (Multiple Process Model)
Interface Layer Application Instance Layer
- O n e SySte m CO m p O n e nt th at IJ RequestComponent ! IJ ResponseComponent ! _
manages the application instance | [severtayer
IJ SessionComponent ! IJ UserComponent I
— At least one component per layer Request Context
Application Layer Object
n HandlerComponent i n PresentationComponent I - _
| | ErrorComponent I
“ ImportExportComponent I “ ValidationComponent I
* Data management: [o]
Storage Layer
n DatabaseComponent i n FilesystemComponent i n DebugComponent i

— Global data is only used for
configuration purposes

— Components don’t store per-request state !

> Per-request global data is stored and passed around
via Request Context Objects

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=GE=NIX.COm Large-Scale Applications in Python

The big picture: Layers and components

Process Boundary (Multiple Process Model)

Interface Layer Application Instance Layer

RequestComponent l ResponseComponent l

Server Layer

; All Component Objects
SessionComponent UserComponent Iy
SystemComponent
Application Layer object
HandlerComponent l PresentationComponent l
ErrorComponent l
lmportExportComponentl ValidationComponent l

LogComponent l

Storage Layer

DatabaseComponent l FilesystemComponentl DebugComponent l

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=niX.COm Large-Scale Applications in Python |

Teams at work: Management objects

* Management objects

— work on or with groups of data/task objects
— help simplify component object implementations

e Tasks:

— interaction with multiple objects

— /O on collections of objects

— delegating work to other management objects
— interfacing to component objects

— etc.

* The distinction between management objects and component objects is
not always clear

— If in doubt, use a component object that
proxies to a management object

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=G=MNiX.COM - Large-Scale Applications in Python

Drill-down: Management objects at work...

[Object)

Application Layer Access Path
HandlerComponent PresentationComponent l
\ Management
TacldViemazer Object ValidationComponent l

Export

2

ImportExportComponen

Data/Task
Object

ExportManager J

CSVImport| XMLImportf | XLSImport CSVExport| | XMLExport| | XLSExport

ImportManager J

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com Large-Scale Applications in Python

Managing responsibilities: Who’s in charge ?

* Use management objects to work on collections of
data/task objects

— avoid direct interfacing between the data/task objects

* Rely on component objects to provide additional facilities to
management objects

— rather then coding them into the management objects

> Never mix responsibilities

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Reality check: What have we learned ?

* Application design is in many ways like
structuring a company:

* Divisions need to be set up (component objects)

* Responsibilities need to be defined (management vs. data/task
objects)

* Processes need to be defined (component/management object APIs)

* Applications work in many ways like companies:

* Customer interaction (user interface)

* Information flow (application interface)

* Decision process (business logic)

* Accounting and data keeping (storage interface)

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=niX.cCom Large-Scale Applications in Python |

At work...

3. At work...

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com Large-Scale Applications in Python

Before you start: Structuring your modules

* First some notes on the import statement:

— Keep import dependencies low;
avoid “from ... import *”

— Always use absolute import paths
(defeats pickle problems among other things)

— Always layout your application modules using Python packages

— Import loops can be nasty;
import on demand can sometimes help

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Some guidelines: Finding the right package structure

* Use one module per

— management/component class

— group of object classes
managed by the same management class

> keep modules small;
if in doubt, split at class boundaries

* Group components and associated
management modules in
Python packages (directories)

* Use the application model as basis for
the package layout

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co

UK Python Conference 2004

=E=NiX.com Large-Scale Applications in Python |

Finding the right mix: Data, classes and methods

Use data objects for data encapsulation...

— instead of simple types (tuples, lists, dictionaries, etc.)

* Use methods even for simple tasks...

— but don’t make them too simple

* Use method groups for more complex tasks

— e.g. to implement a storage query interface

* Use mix-in classes if method groups can be deployed
in more than class context

— If you need to write the same logic twice, think about creating
a mix-in class to encapsulate it, or put it on a base class

— Avoid using mix-in classes if only one class makes use of them

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Make mistakes... and learn from them: Refactoring

* If an implementation gets too complicated,
sit down and reconsider the design...

— often enough a small change in the way
objects interact can do wonders

* Be daring when it comes to rewriting
larger parts of code !

* It sometimes takes more than just a few changes
to get a design right

* A good design will always be faster to implement
than trying to fix a broken one

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=NiX.Com

Large-Scale Applications in Python

Often forgotten: Documentation

* Always document the code
that you write !

Use doc-strings, inline comments and
block logical units using empty lines...

— doc-strings represent your method’s
contracts with the outside world

Document the intent of the methods, classes
and logical code units...

— not only their interface

* Use descriptive identifier names...

— even if they take longer to type

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com

UK Python Conference 2004

=E=nix.com - Large-Scale Applications in Python |

Five minutes that make a difference: Quality Assurance

* Use extreme programming techniques whenever possible: (I:‘}
— Always read the code top to bottom after you have g‘:—/ v
made changes or added something new to it w
— Try to follow the flow of information in your mind /E))
(before actually running the code) ’<’ ()
- Wri.te unit tests for the code and./or test it . @ d \\\
until everything works as advertised in the doc-strings g 4

* Typos can easily go unnoticed in Python:
use the editor’s auto-completion function as often as possible

* Use tools like PyChecker to find hidden typos and possibly bugs

* Always test code before committing it to the software repository

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com

UK Python Conference 2004

=E=niX.cCom Large-Scale Applications in Python |

Discussion

4. Discussion

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com UK Python Conference 2004

=E=nix.com Large-Scale Applications in Python

Developing large-scale applications in Python

* Questions

— Has anyone worked on large-scale Python applications ?
— What tools / features are (still) missing in the tool chain ?

— Would you be prepared to pay for components or
frameworks ?

UK Python Conference 2004

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com

=E=nix.com - Large-Scale Applications in Python |

And finally...

Thank you for your time.

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co UK Python Conference 2004

=E=NiX.com Large-Scale Applications in Python |

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg

Pastor-LOoh-Str. 48

D-40764 Langenfeld

Germany

eMail: mal@egenix.com
Phone: +49 211 9304112

Fax: +49 211 3005250
Web: http://www.egenix.com/

(c) 2004 EGENIX.COM Software GmbH, info@egenix.co

UK Python Conference 2004

mailto:mal@egenix.com
http://www.egenix.com/

	Developing large-scale Applications in Python
	Speaker Introduction: Marc-André Lemburg
	Introduction
	Python2EE: Large-scale applications
	Application Design
	Path to success: Application Design
	Breaking it down: The Design Concept
	First step: Choose a suitable application model
	Bytes in action: Requirements for request processing
	Looking closer: Application layers
	Vertical design: Find the right application layer model
	Example: Web Client + Server Application
	The next step: Breaking layers into smaller pieces
	Plug & play: Component design
	Advantages of components
	Hitchhiker’s guide to: Component implementation
	Horizontal design: Split the layers into components
	The big picture: Layers and components
	Teams at work: Management objects
	Drill-down: Management objects at work…
	Managing responsibilities: Who’s in charge ?
	Reality check: What have we learned ?
	At work...
	Before you start: Structuring your modules
	Some guidelines: Finding the right package structure
	Finding the right mix: Data, classes and methods
	Make mistakes… and learn from them: Refactoring
	Often forgotten: Documentation
	Five minutes that make a difference: Quality Assurance
	Discussion
	Developing large-scale applications in Python
	And finally...
	Contact

