
(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Developing large-scale
Applications in Python

Lessons learned from 10 years of
Python Application Design

EuroPython Conference 2004
Göteborg, Sweden

Marc-André Lemburg

EGENIX.COM Software GmbH
Germany

2

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Speaker Introduction: Marc-André Lemburg

• CEO eGenix.com Software GmbH, Germany
– Founded in 2000
– Core business: projects and products using Python and C
– Popular products: mxODBC, mxDateTime, mx* etc.

• Consultant
– More than 20 years software experience
– Diploma in Mathematics
– Expert in Python, OOP, Web Technologies and Unicode
– Python Core Developer
– Python Software Foundation Board Member (2002-04)
– Contact: mal@egenix.com

mailto:mal@egenix.com

3

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Introduction

1. Introduction

2. Application Design

3. At work...

4. Discussion

4

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Python2EE: Large-scale applications

• What is considered “large-scale” in Python ?
– Server application: >30 thousand lines of Python code
– Client application: >10 thousand lines of Python code

– Third-Party code: >10 thousand lines of code
– Typically a mix of Python code and C extensions

• Examples:
– Zope / Plone
– eGenix Application Server
– eGenix projects: e.g. XML Database, Finance Applications

5

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Application Design

1. Introduction

2. Application Design

3. At work...

4. Discussion

6

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Path to success: Application Design

• Python makes it very easy to write complex applications
with very little code
– It’s easy to create bad designs fast
– Rewriting code is fast as well

• Application design becomes the most important factor in
Python projects

• Here’s a cookbook approach to the problem…

7

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Breaking it down: The Design Concept

• Zen approach to application design
– Keep things as simple as possible, but not simpler (KISS).
– There’s beauty in design.
– Before doing things twice, think twice.
– If things start to pile up, management is needed.
– If management doesn’t help, decomposition is needed.

• Structured approach to application design
–– Divide et Divide et ImperaImpera (divide and conquer)
– Lots and lots of experience ☺

8

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

First step: Choose a suitable application model

• Client-Server
– Client application / Server application
– Web client / Server application

• Multi-threaded stand-alone
– Stand-alone GUI application

• Single process
– Command-line application
– Batch job application

• etc.

ClientClient

ServerServer

GUI

Event Handler
Business Logic

InputInput ProcessorProcessor OutputOutput

9

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Bytes in action: Requirements for request processing

• Identify the processing scheme:
– Single process
– Multiple processes
– Multiple threads
– Asynchronous processing
– A mix of the above

• Identify the process/thread boundaries:
– Which components (need to) share the

same object space ?
– Where is state kept ?
– What defines an application instance ?

Process 1Process 1
Interface Logic

Application Logic
Server Logic

Storage Logic

Process 2Process 2
Interface Logic

Application Logic
Server Logic

Storage Logic

Process 3Process 3
Interface Logic

Application Logic
Server Logic

Storage Logic

10

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Looking closer: Application layers

• Every application can be divided into layers of functionality
defined by the flow of data through the application
– Top layer: interface to the outside world
– Intermediate layers: administration and processing
– Bottom layer: data storage

• Layers are usually easy to identify
given the application model
– … but often hard to design

ApplicationApplication
Interface Logic

Application Logic
Administration Logic

Storage Logic

11

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Vertical design: Find the right application layer model

ClientClient

Web
Browser

• GUI / Application Logic / Storage Logic

• Network / Apache / SCGI / Server Logic /
Application Logic / Storage Logic

• File I/O / Application Logic /
Storage Logic

• Custom model

ServerServer
Interface Logic

Application Logic
Server Logic

Storage Logic

12

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Example: Web Client + Server Application

• Setup:

– Client is a standard
web-browser

– Server needs to take a lot
of load and will have to
do all the calculation
work

– Server needs to be
fail-safe

• Solution:

– Multiple process model
– Application server layers

ClientClient

Web
Browser

ClientClient

Web
Browser

ClientClient

Web
Browser

Apache Web ServerApache Web Server

Multiple Process BrokerMultiple Process Broker

Server ProcessServer Process
Interface Logic

Application Logic

Server Logic

Storage Logic

Server ProcessServer Process
Interface Logic

Application Logic

Server Logic

Storage Logic

Server ProcessServer Process
Interface Logic

Application Logic

Server Logic

Storage Logic

Database

13

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

The next step: Breaking layers into smaller pieces

• Layers provide a data driven separation of functionality

• Problem:
– The level of complexity is usually too high

to implement these in one piece of code

• Solution:
– build layers using a set of

loosely coupled components

14

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Plug & play: Component design

• Components should encapsulate higher level concepts
within the application, e.g.
– provide the database interface
– implement the user management
– implement the session management
– provide caching facilities
– interface to external data sources
– provide error handling facilities
– enable logging management
– etc.

15

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Advantages of components

• Components provide independent building blocks
for the application
– They should be easily replaceable to adapt the application to new

requirements, e.g.
• porting the application to a new database backend,
• using a new authentication mechanism, etc.
¾ If implemented correctly, they will allow switching to different

processing model should the need arise

– Loose coupling of the components make it possible to
• refine the overall application design,
• refactor parts of the layer logic or
• add new layers
¾without having to rewrite large parts of the application code

16

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Hitchhiker’s guide to: Component implementation

• Each component is represented by a component object

• One system component object (representing the application instance):

– All component objects are created and managed by the system object
– Components can access each other through the system object

(circular references !)

• Component interfaces must be simple and high-level enough
to allow for loose coupling

– Internal parts of the components are never accessed directly,
only via the component interface

• Note: Component objects should never keep state across requests
(ideally, they should be thread-safe)

17

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Horizontal design: Split the layers into components

• General approach:
– One system component that

manages the application instance
– At least one component per layer

• Data management:
– Global data is only used for

configuration purposes
– Components don’t store per-request state !

¾ Per-request global data is stored and passed around
via Request Context Objects

Process Boundary (Multiple Process Model)

Interface Layer

Server Layer

Application Layer

Storage Layer

RequestComponent ResponseComponent

SessionComponent UserComponent

HandlerComponent PresentationComponent

ValidationComponentImportExportComponent

FilesystemComponentDatabaseComponent

Application Instance Layer

SystemComponent

ErrorComponent

LogComponent

DebugComponent

Request Context
Object

Request Context
Object

18

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

The big picture: Layers and components

Process Boundary (Multiple Process Model)

Interface Layer Application Instance Layer

RequestComponent ResponseComponent SystemComponent

Server Layer
All Component Objects

are connected to the
SystemComponent

object

SessionComponent UserComponent

Application Layer

HandlerComponent PresentationComponent

ErrorComponent
ImportExportComponent ValidationComponent

LogComponent
Storage Layer

DatabaseComponent FilesystemComponent DebugComponent

19

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Teams at work: Management objects

• Management objects
– work on or with groups of data/task objects
– help simplify component object implementations

• Tasks:
– interaction with multiple objects
– I/O on collections of objects
– delegating work to other management objects
– interfacing to component objects
– etc.

• The distinction between management objects and component objects is
not always clear
– If in doubt, use a component object that

proxies to a management object

20

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Drill-down: Management objects at work…

HandlerComponent PresentationComponent

ValidationComponent

ImportExportComponent

TaskManagerTaskManager

EditEdit StoreStore ExportExport

ImportManagerImportManager

CSVImportCSVImport XMLImportXMLImport XLSImportXLSImport

ExportManagerExportManager

CSVExportCSVExport XMLExportXMLExport XLSExportXLSExport

Management
Object

Data/Task
Object

SystemComponent

Object
Access PathApplication Layer

21

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Managing responsibilities: Who’s in charge ?

• Use management objects to work on collections of
data/task objects
– avoid direct interfacing between the data/task objects

• Rely on component objects to provide additional facilities to
management objects
– rather then coding them into the management objects

¾ Never mix responsibilities

22

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Reality check: What have we learned ?

• Application design is in many ways like
structuring a company:
• Divisions need to be set up (component objects)
• Responsibilities need to be defined (management vs. data/task

objects)
• Processes need to be defined (component/management object APIs)

• Applications work in many ways like companies:
• Customer interaction (user interface)
• Information flow (application interface)
• Decision process (business logic)
• Accounting and data keeping (storage interface)

23

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

At work...

1. Introduction

2. Application Design

3. At work...

4. Discussion

24

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Before you start: Structuring your modules

• First some notes on the import statement:
– Keep import dependencies low;

avoid “from … import *”

– Always use absolute import paths
(defeats pickle problems among other things)

– Always layout your application modules using Python packages

– Import loops can be nasty;
import on demand can sometimes help

25

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Some guidelines: Finding the right package structure

• Use one module per
– management/component class
– group of object classes

managed by the same management class
¾ keep modules small;

if in doubt, split at class boundaries

• Group components and associated
management modules in
Python packages (directories)

• Use the application model as basis for
the package layout

26

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Finding the right mix: Data, classes and methods

• Use data objects for data encapsulation…
– instead of simple types (tuples, lists, dictionaries, etc.)

• Use methods even for simple tasks…
– but don’t make them too simple

• Use method groups for more complex tasks
– e.g. to implement a storage query interface

• Use mix-in classes if method groups can be deployed
in more than class context
– If you need to write the same logic twice, think about creating

a mix-in class to encapsulate it, or put it on a base class
– Avoid using mix-in classes if only one class makes use of them

27

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Make mistakes… and learn from them: Refactoring

• If an implementation gets too complicated,
sit down and reconsider the design…
– often enough a small change in the way

objects interact can do wonders

• Be daring when it comes to rewriting
larger parts of code !

• It sometimes takes more than just a few changes
to get a design right

• A good design will always be faster to implement
than trying to fix a broken one

28

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Often forgotten: Documentation

• Always document the code
that you write !

• Use doc-strings, inline comments and
block logical units using empty lines…

– doc-strings represent your method’s
contracts with the outside world

• Document the intent of the methods, classes
and logical code units…

– not only their interface

• Use descriptive identifier names…

– even if they take longer to type

29

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Five minutes that make a difference: Quality Assurance

• Use extreme programming techniques whenever possible:

– Always read the code top to bottom after you have
made changes or added something new to it

– Try to follow the flow of information in your mind
(before actually running the code)

– Write unit tests for the code and/or test it
until everything works as advertised in the doc-strings

• Typos can easily go unnoticed in Python:
use the editor’s auto-completion function as often as possible

• Use tools like PyChecker to find hidden typos and possibly bugs

• Always test code before committing it to the software repository

30

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Discussion

1. Introduction

2. Application Design

3. At work...

4. Discussion

31

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Developing large-scale applications in Python

• Questions

– Has anyone worked on large-scale Python applications ?

– What tools / features are (still) missing in the tool chain ?

– Would you be prepared to pay for components or
frameworks ?

32

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

And finally...

Thank you for your time.

33

Large-Scale Applications in Python

(c) 2004 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2004

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg
Pastor-Löh-Str. 48
D-40764 Langenfeld
Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250
Web: http://www.egenix.com/

mailto:mal@egenix.com
http://www.egenix.com/

	Developing large-scale Applications in Python
	Speaker Introduction: Marc-André Lemburg
	Introduction
	Python2EE: Large-scale applications
	Application Design
	Path to success: Application Design
	Breaking it down: The Design Concept
	First step: Choose a suitable application model
	Bytes in action: Requirements for request processing
	Looking closer: Application layers
	Vertical design: Find the right application layer model
	Example: Web Client + Server Application
	The next step: Breaking layers into smaller pieces
	Plug & play: Component design
	Advantages of components
	Hitchhiker’s guide to: Component implementation
	Horizontal design: Split the layers into components
	The big picture: Layers and components
	Teams at work: Management objects
	Drill-down: Management objects at work…
	Managing responsibilities: Who’s in charge ?
	Reality check: What have we learned ?
	At work...
	Before you start: Structuring your modules
	Some guidelines: Finding the right package structure
	Finding the right mix: Data, classes and methods
	Make mistakes… and learn from them: Refactoring
	Often forgotten: Documentation
	Five minutes that make a difference: Quality Assurance
	Discussion
	Developing large-scale applications in Python
	And finally...
	Contact

