=E=niX.Com

Python Database APIs

Accessing databases is easy in Python

EuroPython Conference 2002
Charleroi, Belgium

Marc-André Lemburg

EGENIX.COM Software GmbH
Germany

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Python Database APIs: Overview

1. Background

2. Basics

3. Advanced Usage

4. Examples and Conclusion

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Python Database APIs: Part 1

1. Background

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

* Provide a standard interface from Python to databases

* Standard should be easy to implement and understand

— more database modules
— higher quality modules
— more supported backends

* Things that it is not...

— a single interface with pluggable drivers
— a software package you can download
— application abstraction layers provide these

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002



=E=niX.Com

Background: History

eShop (Greg Stein, Bill Tutt) wrote an ODBC module and started
discussing a standard database Python API on the newsgroup/mailing list

— Result: DB API 1.0

* DB API 1.0 provided a good start for coding database modules but had
some caveats

* After 2-3 years a new effort was started to solve most of the caveats

— Result: DB API 2.0

(after long discussions on the Python Database SIG mailing list and solved
most of these problems)

* The DB API still has a few caveats and many database modules provide
extensions to the API standard

— Result: a set of standard extensions were defined

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002



=E=niX.Com

Python Database APIs: Part 2

2. Basics

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Basics: Connection Objects

* Connection objects logically wrap a database connections

Example:

conn = Connect(Datasourcename, Username, Password)

* You can't execute statements on connection objects

— Database cursors are needed to do this

* Connection objects provide the means to handle
transactions
— Transactions are logical groups of statements executed on a
connection.
— The main benefit is that you can undo changes very easily.
— Watch out: Not all databases provide transactions !

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002



=E=niX.Com

Basics: Cursor Objects

* Cursor objects provide a way to "talk" to the database

Example:
cursor = conn.cursor()
cursor.execute('create table testtable (id int, name varchar(254)")

* Cursor objects can have state: e.g. they hold the query data
after a statement was executed

Example:

cursor.execute('select * from testtable')
first row = cursor.fetchone()

next 10 _rows = cursor.fetchmany(10)
all_remaining_rows = cursors.fetchall()

EuroPython Confrence 2002

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com



=E=niX.Com

Basics: Cursor Objects

* Passing data from Python to the database

— First option:
Quoting values and sending plain SQL to the database

— Second option (preferred):
Using binding parameters in the SQL (*?' for ODBC) and passing in
the data using Python lists and tuples

— Problem: both are database backend dependent

Example:

cursor = conn.cursor()

cursor.execute("insert into testtable values (2, 'Fred')")
cursor.execute("insert into testtable value (?2,2)", (2, 'Fred"))

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002



=E=niX.Com

Basics: Cursor Objects

* Sample session (mxODBC using MS Access on Windows)

from mx.ODBC.Windows import *

conn = Connect('test, 'test’, 'test)

C = conn.cursor()
(‘create table testtable (id int, name varchar(254))")
(insert into testtable values (2, ?2)', (1,'Marc))

c.execute('insert into testtable values (¢, ?)', (2,'Fred"))
(insert into testtable values (2, ?)', (3, Tim'))
('insert into testtable values (2, ?2)', (4,'Peter'))

c.execute

c.execute

c.execute
c.execute(’
c.execute('select * from testtable')
rows = c.fetchall()

rows ... [(1, 'Marc), (2, 'Fred), (3, 'Tim'), (4, 'Peter’)]

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Python Database APIs: Part 3

3. Advanced Usage

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Advanced Usage: Transactions

* Transactions logically wrap (multiple) statements into blocks of
execution

— Benefit: You can undo changes very easily

* The DB API supports transactions (if the database supports them) via
methods on the connection object:

— .commit()
* Write all changes of the last transaction block to the database

— .rollback()

* Undo all changes applied to the database on the connection.

* Transaction Isolation: who will see my changes ?

— Database dependent

— Sometimes configurable per connection (e.g. mxODBC supports this if the
underlying database does)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Advanced Usage: Schema Introspection

* Finding the column types of an existing table:

— Standard trick:
1. execute SELECT * FROM TESTTABLE WHERE 1=0
2. look at the .description attribute

* More advanced: use catalog methods from mxODBC

— cursor.columns(table='testtable')

— rows = cursor.fetchall()

— rows ... [((D:\\tmp\\test, None, 'testtable’, 'id', 4, INTEGER/, 10, 4, O,
10, 1, None, None, 4, None, None, 1, 'YES', 1), ('D:\\tmp\\test,,
None, 'testtable', 'name', 12, 'VARCHAR', 254, 508, None, None, 1,
None, None, 12, None, 508, 2, 'YES', 2)]

* (Caveat: only available in mxODBC

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002



=E=niX.Com

Python Database APIs: Part 4

4. Examples and Conclusion

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Conclusion:

The Python Database API is easy,
yet powerful !

... use it :-)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Questions...

Thank you for your time.

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002




=E=niX.Com

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg

Pastor-L6h-Str. 48

D-40764 Langenfeld

Germany

eMail: mal@egenix.com
Phone: +49 211 9304112

Fax: +49 211 3005250
Web: http://www.egenix.com/

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com

EuroPython Confrence 2002


mailto:mal@egenix.com
http://www.egenix.com/

	Python Database APIs
	Python Database APIs: Overview
	Python Database APIs: Part 1
	Background: Why DB API ?
	Background: History
	Python Database APIs: Part 2
	Basics: Connection Objects
	Basics: Cursor Objects
	Basics: Cursor Objects
	Basics: Cursor Objects
	Python Database APIs: Part 3
	Advanced Usage: Transactions
	Advanced Usage: Schema Introspection
	Python Database APIs: Part 4
	Conclusion:
	Questions...
	Contact

